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Problem Description

 Given     (observations), find      (predictions)

 For example, 

X Y

{ , , ,...}

{ , , ,...}

X temperature moisture pressure

Y Sunny Rainy Stormy






Might depend on 
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Problem Description

 The relational connection occurs in many applications, NLP, 
Computer Vision, Signal Processing, …. 

 Traditionally in graphical models,

 Modeling the joint distribution can lead to difficulties 

 rich local features occur in relational data,

 features may have complex dependencies, 

 constructing  probability distribution over them is difficult

 Solution: directly model the conditional,  

 is sufficient for classification!

 CRF is simply a conditional distribution with an 
associated graphical structure
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 Generative Model:  A model that generate 
observed data randomly

 Naïve Bayes: once the class label is known, all 
the features are independent 

 Discriminative: Directly estimate the posterior 
probability;  Aim at modeling the 
“discrimination” between different outputs

 MaxEnt  classifier: linear combination of feature 
function in the exponent, 

Both generative models and discriminative models describe distributions over (y , x), but 
they work in different directions.
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Markov Random Field(MRF) and Factor Graphs

 On an undirected graph, the joint distribution of 
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Markov Random Field(MRF) and Factor Graphs

 On an undirected graph, the joint distribution of 
variables    

 :Potential function

 Typically :  

 :Partition function

 Not all distributions satisfy Markovian properties

 Hammersley-Clifford Theorem

 The ones which do can be factorized
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Sequence prediction

 Like NER: identifying and classifying proper names in text, e.g. China as 
location; George Bush as people; United Nations as organizations
 Set of observation,                 
 Set of underlying sequence of states, 

 HMM is generative:

 Doesn’t model long-range dependencies
 Not practical to represent multiple interacting features (hard to model p(x))
 The primary advantage of CRFs over hidden Markov models is their 

conditional nature, resulting in the relaxation of the independence assumptions
 And it can handle overlapping features 

Transition probability

Observation probability
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 If                           , and                        , ;             

and      are neighbors 
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fixed, 

observable, 

variables X (not 

in the MRF)

the CRF

Y

X

Note that in a CRF we do not explicitly model any direct relationships 

between the observables (i.e., among the X) (Lafferty et al., 2001).  

Hammersley-Clifford does not apply to X! 
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Note that we are not summing 

over x in the  denominator

( , )c c y x

• The cliques contain only unobservables (y); though, x is an argument to c

• The probability PM(y|x) is a joint distribution over the unobservables Y
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Chain CRFs vs. MEMM

 Linear-chain CRFs were originally introduced as an improvement to MEMM

 Maximum Entropy Markov Models (MEMM)

 Transition probabilities are given by logistic regression

 Notice the per-state normalization

 Only dependent on the previous inputs; no dependence on the future states. 

 Label-bias problem
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Inference

 Given the observations,{xi})and parameters, we target to find the 
best state sequence

 For the general CRF: 

 For general graphs, the problem of exact inference in CRFs is 
intractable

 Approximate methods !  A large literature …
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Inference in HMM

 Dynamic Programming: 
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Inference in HMM

 Dynamic Programming: 

 Forward

 Backward

 Viterbi
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Inference: Chain-CRF

 The inference of linear-chain CRF is very similar to that of HMM

 We can write the marginal distribution:

 Solve Chain-CRF using Dynamic Programming (Similar to Viterbi)!









Inference: Chain-CRF

 The inference of linear-chain CRF is very similar to that of HMM

 We can write the marginal distribution:

 Solve Chain-CRF using Dynamic Programming (Similar to Viterbi)!

 1. First computing α for all t (forward), then compute β for all t (backward).

 2. Return the marginal distributions computed. 

 3. Run viterbi to find the optimal sequence  
2. | |n 



Outline

 Modeling

 Inference

 Training

 General CRF

 Some notes on approximate learning

 Applications



Parameter Learning

 Given the training data,                            we wish to learn parameters of the 
model. 









Parameter Learning

 Given the training data,                            we wish to learn parameters of the 
model. 

 For chain or tree structured CRFs, they can be trained by maximum 
likelihood







Parameter Learning

 Given the training data,                            we wish to learn parameters of the 
model. 

 For chain or tree structured CRFs, they can be trained by maximum 
likelihood

 The objective function for chain-CRF is convex(see Lafferty et al(2001) ).





Parameter Learning

 Given the training data,                            we wish to learn parameters of the 
model. 

 For chain or tree structured CRFs, they can be trained by maximum 
likelihood

 The objective function for chain-CRF is convex(see Lafferty et al(2001) ).

 General CRFs are intractable hence approximation solutions are necessary



Parameter Learning

 Given the training data,                            we wish to learn parameters of the 
mode. 







Parameter Learning

 Given the training data,                            we wish to learn parameters of the 
mode. 

 Conditional log-likelihood for a general CRF:





Parameter Learning

 Given the training data,                            we wish to learn parameters of the 
mode. 

 Conditional log-likelihood for a general CRF:



Empirical 
Distribution



Parameter Learning

 Given the training data,                            we wish to learn parameters of the 
mode. 

 Conditional log-likelihood for a general CRF:



Empirical 
Distribution



Parameter Learning

 Given the training data,                            we wish to learn parameters of the 
mode. 

 Conditional log-likelihood for a general CRF:



Empirical 
Distribution

Hard to calculate!



Parameter Learning

 Given the training data,                            we wish to learn parameters of the 
mode. 

 Conditional log-likelihood for a general CRF:

 It is not possible to analytically determine the parameter values that 
maximize the log-likelihood – setting the gradient to zero and solving for λ
does not always yield a closed form solution. (Almost always) 

Empirical 
Distribution

Hard to calculate!
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 This could be done using gradient descent

 Until we reach convergence 

 Or any other optimization: 

 Quasi-Newton methods: BFGS [Bertsekas,1999] or  L-BFGS [Byrd, 1994]
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Parameter Learning

 This could be done using gradient descent

 Until we reach convergence 

 Or any other optimization: 

 Quasi-Newton methods: BFGS [Bertsekas,1999] or  L-BFGS [Byrd, 1994]

 General CRFs are intractable hence approximation solutions are necessary

 Regularization:

  is a regularization parameter
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Compared with Markov chains, CRF’s should be more discriminative, much 

slower to train and possibly more susceptible to over-training.
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 Max Flow-Min Cut (Ford-Fulkerson, 1956 )

 Pseudo-likelihood approximation: 

 Convert a CRF into separate patches; each consists of a hidden 
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that, man!
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CRF frontiers

 Bayesian CRF:

 Because of the large number of parameters in typical applications 
of CRFs 

 prone to overfitting.

 Regularization?

 Instead of 



 Too complicated! How can we approximate this?

 Semi-supervised CRF:

 The need to have big labeled data! 

 Unlike in generative models, it is less obvious how to incorporate 
unlabelled data into a conditional criterion, because the unlabelled 
data is a sample from the distribution ( )p x
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Some applications: Part-of-Speech-Tagging

Students need another break

noun verb article noun

 POS(part of speech) tagging; the identification of words as nouns, verbs, 
adjectives, adverbs, etc.

 CRF features: 

Feature Type Description

Transition k,k’ yi = k and yi+1=k’

Word k,w yi = k and xi=w
k,w yi = k and xi-1=w
k,w yi = k and xi+1=w
k,w,w’ yi = k and xi=w and xi-1=w’
k,w,w’ yi = k and xi=w and xi+1=w’

Orthography:  Suffix s in {“ing”,”ed”,”ogy”,”s”,”ly”,”ion”,”tion”,
“ity”, …} and k yi=k and xi ends with s

Orthography:  Punctuation k yi = k and xi is capitalized
k yi = k and xi is hyphenated
…
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 If your application gives you good structural information such that could be 
easily modeled by dependent distributions, and could be learnt tractably, go the 
generative way! 
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 If your application gives you good structural information such that could be 
easily modeled by dependent distributions, and could be learnt tractably, go the 
generative way! 

 Ex. Higher-order emissions from individual states

 Incorporating evolutionary conservation from an alignment: PhyloHMM, for which 

efficient decoding methods exist:

“unobservables”

“observables”

A    A    T    C    G

states

target 

genome

“informant

” genomes
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