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Abstract

Neural question generation (NQG) is the task of generating
questions from the given context with deep neural networks.
Previous answer-aware NQG methods suffer from the prob-
lem that the generated answers are focusing on entity and
most of the questions are trivial to be answered. The answer-
agnostic NQG methods reduce the bias towards named enti-
ties and increasing the model’s degrees of freedom, but some-
times result in generating unanswerable questions which are
not valuable for the subsequent machine reading comprehen-
sion system. In this paper, we treat the answers as the hid-
den pivot for question generation and combine the question
generation and answer selection process in a joint model. We
achieve the state-of-the-art result on the SQuAD dataset ac-
cording to automatic metric and human evaluation.

Introduction
Question generation (QG), or learning to ask, is a chal-
lenging problem in natural language understanding, it has
been an active field of research within the context of ma-
chine reading comprehension (MRC). Question generation
has many useful applications such as improving the MRC
(Yuan et al. 2017; Xiao et al. 2018) by providing more train-
ing data, generating educational purposes exercises (Heil-
man and Smith 2010), and helping dialog systems, such as
Alexa and Google Assistant.

Conventional methods for question generation rely heav-
ily on heuristic rules, sometimes the standalone constituent
or dependency parsing tool is needed to generate the hand-
crafted templates (Mostow and Chen 2009; Heilman and
Smith 2010; Rus et al. 2010; Hussein, Elmogy, and Guir-
guis 2014). These rule-based systems are brittle and have
low generalizability and scalability. Recent works on ques-
tion generation are focusing on using deep neural networks
with the end to end training, which is also known as neural
question generation. NQG is based on sequence to sequence
methods, using mechanism borrowed from the neural ma-
chine translation, such as copy (Çaglar Gülçehre et al. 2016;
Zhou et al. 2017) and attention (Bahdanau, Cho, and Bengio
2014; Yuan et al. 2017; Scialom, Piwowarski, and Staiano
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���������� In accordance with his father’s wishes, Luther enrolled in
law school at the same university that year but dropped out almost
immediately, believing that law represented uncertainty. Luther sought
assurances about life and was drawn to theology and philosophy.

Predicted Answer: Luther
Predicted Question: Who enrolled in law 
school accord with his father’s wishes?
Predicted Question: Why does Luther
sought assurances about life?
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Figure 1: The bad case of answer-aware and answer-agnostic
NQG. In answer-aware question generation, the generated
answer Luther is just a named entity that could be trivially
inferred by subsequent text, and without much value to be
asked. In answer-agnostic case the generated question is flu-
ent but could not be answered by the paragraph.

2019). NQG shows great advantage compared with previous
rule-based systems both in terms of question fluency and di-
versity (Duan et al. 2017; Yuan et al. 2017).

Briefly, NQG systems are mainly divided into two
streams: answer-aware and answer-agnostic. In answer-
aware NQG system, the models are given not only the
paragraph but also the target answers (Yuan et al. 2017;
Sun et al. 2018; Song et al. 2018; Chen, Wu, and Zaki 2019),
and the models are learned to interact with the paragraph and
the target answer to generate the specific questions. How-
ever, in real applications, the answers are not provided so we
should first generate the candidate answers and then produce
the questions thereof. Dong et al. (2018) found that the gen-
erated answers are focused on named entities so the question
types are limited to certain types. Furthermore, Golub et al.
(2017) showed that sometimes the selected answers are just
arbitrary entities, regardless of their importance in the cor-
responding paragraph,so the generated questions are trivial
that benefit little to the MRC systems (Duan et al. 2017).

Conversely, current NQG systems are more and more fo-
cusing on answer-agnostic NQG (Subramanian et al. 2018;
Kim et al. 2019; Scialom, Piwowarski, and Staiano 2019),



which lifts the constraint of knowing the target answers be-
fore generating the questions (Du, Shao, and Cardie 2017).
The agnostic of the target answer increasing the model’s de-
grees of freedom to generate diverse questions. However, the
answer-agnostic NQG systems are suffered from the fact the
generated answers may be unanswerable (Sun et al. 2018),
an example in Figure 1 demonstrates this problem. Further-
more, the lack of corresponding answers limiting their ap-
plication in MRC where the answers are requisite.

In this paper, we try to combine the advantage of answer-
aware and answer-agnostic NQG in a joint model. We treat
the answers as the hidden pivot when generating the ques-
tions. Concretely, we first generate the hidden answers given
the paragraph, and then combined paragraph and the induced
pivot answers to produce the questions, the objective is to
maximize the likelihood of the questions. In this way, the
model is learned such that the better hidden answers pivot
could yield better questions. Our model could be seemed as
the compromise between answer-aware and answer-agnostic
model. If we ignore the hidden answer pivot, then it reduced
to answer-agnostic models where the answers are bypassed;
if we fed the ground truth answers as the pivot then its be-
haves like the answer-aware model. Therefore, our model
could take the advantages of both worlds.

We conduct throughout experiments on SQuAD (Ra-
jpurkar et al. 2016). The proposed model consistently out-
performs the pure answer-aware or answer-agnostic coun-
terparts in terms of the automatic evaluation metric. The
human assessment demonstrates that our proposed model
could generate both answerable and diverse questions. Fur-
thermore, preliminary experiments show that the induced
hidden answers are accord with the real target answers, even
if the model was trainined without answer supervision. Fi-
nally, the generated data of our model also excels at improv-
ing the result of downstream MRC. Codes and analysis of
this paper will be public available.

Related Work
Automatic question generation has received increased at-
tention from the research community. Traditional QG sys-
tems are most rule-based, which sometimes utilizing off-
the-shelf NLP tools to get the syntactic structure, depen-
dency relations and semantic role of the passage (Mostow
and Chen 2009; Heilman and Smith 2010; Chali and Hasan
2015). First, the target answers are generated using rules or
semantic roles, next, they generate questions using hand-
crafted transformation rules or templates. Finally, the gen-
erated questions are ranked by features such as key word
matching degree or sentence perplexity (Hussein, Elmogy,
and Guirguis 2014; Heilman 2011). The main drawbacks of
these symbolic systems are that the rules and templates are
expensive to manually create, and lack diversity.

Recently, with the development of deep learning and
large-scale question answering dataset, motivated by neu-
ral machine translation, Du, Shao, and Cardie (2017) pro-
posed a sequence to sequence (seq2seq) architecture com-
bined with attention mechanism, achieving a promising re-
sult on MRC dataset SQuAD. Since then, many works have
been proposed to extends the preliminary framework with

rich features, such as answer position (Sun et al. 2018),
named entity tags (Zhou et al. 2017) or templates (Duan et
al. 2017), and incorporate copy mechanism to copy words
from the context paragraph (Song et al. 2018). However,
these methods are all based on the maximum likelihood es-
timation, which has the notorious problem of exposure bias
(Ranzato et al. 2015) and other deficiency during inference
(Kumar, Ramakrishnan, and Li 2018; Chen, Wu, and Zaki
2019). Some training objectives other than teacher forcing
are introduced, such as BLEU score (Kumar, Ramakrish-
nan, and Li 2018), generated question perplexity (Yuan et
al. 2017) or word embedding similarities (Chen, Wu, and
Zaki 2019). However, Hosking and Riedel (2019) found that
although those policy gradient methods leads to increases in
the metrics such as BLEU, but they are poorly aligned with
human judgment and the model simply learns to exploit the
weaknesses of the reward source.

While most NQG models are focused on answer-aware
setting, recently, answer-agnostic NQG has attracted more
and more attention. In the case that only the input passage
is given, the system should automatically identify question-
worthy parts within the passage and generate questions
thereof. Du, Shao, and Cardie (2017) learns a sentence se-
lection task to identify the sentences in the paragraph us-
ing a neural network-based sequence tagging models. Sub-
ramanian et al. (2018) train a neural keyphrase extractor
to predict the keyphrase within the paragraph. Scialom, Pi-
wowarski, and Staiano (2019) argues that the predicted an-
swer may make the generated question biased towards the
factoid questions, and they train a Transformer (Vaswani et
al. 2017) based answer-agnostic model and obtain a promis-
ing result in terms of the human evaluation.

The pros and cons of previous answer-aware and answer-
agnostic NQG models motivate us to combine them to-
gether: our model are built upon answer-agnostic NQG, but
we explictly infer the hidden answers and generated ques-
tions based on the induced hidden answer.

Methodology
In this paper, we denote the context paragraph as C =
{c1, c2, ..., cn}, our objective is to predict the target ques-
tions Q = {q1, q2, ..., qm}. The whole architecture is built
upon the standard encoder-decoder architecture, with the
multi-head attention as the building block, an additional hid-
den pivot predictor is introduced to get the candidate answer.

Paragraph Encoder
The paragraph encoder encodes the paragraph into dense
embedding space. In this paper, based on the current devel-
opment of NLP (Radford et al. 2019; Devlin et al. 2018), we
adopt the self-attention based Transformer (Vaswani et al.
2017) as the building block. The hidden representation for
layer l could be represented as:

ql, kl, vl = Wl
qhl−1,Wl

khl−1,Wl
vhl−1,

hl =MultiHeadAttention(ql, kl, vl)
(1)

MultiHeadAttention(q, k, v) = softmax(
qT k√
d
)v (2)



ql,kl, vl are query, key and value representations for this
layer and Wl

q,k,v are weight matrixes. d is the hidden size.
The first layer is the word embedding layer, we use the last
layer output H ∈ Rn×d as the paragraph representations.

Pivot Answer Predictor
Compared with prvious anwer-agnostic NQG methods, the
most significant difference of our model is that we explicity
infer the candidate answer before generating the questions,
thus the induced answers act like a pivot in our model. The
pivot answer predictor predict the hidden answer based on
the current paragraph. We predict the binary label of the ith
word to denote whether the current tokens is locate within
the answer spans:

zi = MLP(hi),

gi = σ(zTi wz),

zi =

{
1, gi > 0.5,

0, gi ≤ 0.5

(3)

where MLP is the multi-layer perceptron, and σ is the sig-
moid activation function. w is the weight vector to transform
the hidden representation into a scalar value. z is a binary in-
dicator to denote the current word is in (1) or out of (0) the
answer span. Thus, our model could be fitted to the scenario
where the answer spans are continous or discontinues.

After the pivot answer predictor, along with the original
paragraph hidden representations H, we also has the answer
position information which could guide the subsequent de-
coder to generate specific questions. As the answer indicator
z is a binary value, we use an embedding D ∈ R2×d matrix
to embed this indicator to the representation Z, and add it to
H as the final hidden representation of the encoder:

C = H + Z (4)

Question Decoder
The question decoder is similar with previous answer-aware
NQG model, which takes the paragraph hidden representa-
tions and answer indicator as input and generate the target
question in an auto-regressive way. The probability of gen-
erating the target token in step i is:

p(qi|q<i,C) (5)

where q<i represents the question words at earlier timesteps.
We adopt the Transformer as the decoder module. Suppose
the inner state of the current timestep in layer l − 1 is sl−1t :

qt, kt, vt = Wqsl−1
t ,Wksl−1

≤t ,Wvsl−1
≤t ,

slt = MultiHeadAttention(qt, kt, vt)

qt, kt, vt = Wqslt,WkC,WvC,

s
′l
t = MultiHeadAttention(qt, kt, vt)

slt = s
′l
t + slt

(6)

The first multi-head attention is the self-attention to gather
the decoder information up to current timestep, and the sec-
ond multi-head attention is to get the attentive representation
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Figure 2: The forward and backward pass in our model. We
use the straight through estimator to estimate the gradient of
the scalar values z during backward phase.

from the paragraph. Finally their representations are added
as the current layer output, and the output probability is:

ot = softmax(WosLt + bo) (7)

where Wo ∈ Rd×|V | and bo ∈ R|V | are the output weight
parameters, |V | is the size of the shortlist vocabulary.

Training
The model is initially trained to minimize the negative log-
likelihood of the data under the model distribution,

LMLE = −Eq

∑
i

log p(qi|q<i,C) (8)

However, in the answer pivot layer, we make a binary sample
from the indicator (Eq. 3), which makes the model discontin-
uous and the gradient flow is block in standard error back-
propagation. To enable the end to end training, a common
approach is to use the policy gradient methods adopted from
reinforcement learning where the rewards are environment-
provided scalar values (Williams 1992). However, it suffers
from the well-known variance problem of estimating the
gradient (Sutton et al. 2000). This problem is even severed
in our application because there are n candidate output in a
single time, making the variance even higher.

In this paper, inspired by previous works of training deep
belief networks and other types of hard non-smooth neural
networks (Hinton, Srivastava, and Swersky 2012; Bengio,
Léonard, and Courville 2013). We use the straight-through
estimator to estimate the gradients for binary latent answer
pivot. Suppose the parameter of the encoder is θ, then the
gradients are estimated by:

dEq

∑
i log p(qi|q<i,C)

∂θ

=
dEq

∑
t log p(qi|q<i,C)

dz

dz

dg

dg

∂θ

≈
dEq

∑
t log p(qi|q<i,C)

dz

dg

∂θ

(9)

The straight through gradient estimator is shown in Fig-
ure 2. We can see that the gradient to the hard neurons
z are approximated by its source g = σ(zT wz) which
is smooth and derivable. Although it is a biased estima-
tor, it has been shown to be a fast and efficient method
to estimate the gradient of the discrete variables, espe-
cially for the Bernoulli variable case (Hubara et al. 2016;
Shen et al. 2018).



Auxiliary Pivot Prediction
The initial MLE objective in Eq. 8 is powerful to train the
encoder-decoder architecture. However, in our preliminary
experiment, we found that sometimes our model may ig-
nore the latent pivot variable and generate the questions only
based on the context paragraph, which reduce the model to
the answer-agnostic scenario. This phenomenon is also re-
ferred to posterior collapse problem (Lucas et al. 2019) in
variational autoencoder (Kingma and Welling 2013).

In this paper, we propose an auxiliary objective to ame-
liorate this issue. After the question generation from the de-
coder, we concatenate the paragraph representations H with
question representations S in Eq. 6, and predict the binary
answer pivot labels in the paragraph,

H = [H;S]

H̃ = TransformerEncoder(H)

b = σ(wT
h H̃[0:n])

LAP = −
∑
i

zi log bi + (1− zi) log(1− bi)

(10)

Where the subscript AP denotes the answer position, and
the loss is the binary cross entropy between the predicted
answer and pivot answer position. This objective is similar
with the answer pivot prediction in Eq. 3 except that we in-
corporate the question representations. The question repre-
sentations are obtained from the decoder which also takes
the answer pivot information Z as input. Therefore, when
the model is optimized, the question would take the pivot
answer into account to reduce this loss function, making the
predicted hidden answer pivot more and more accurate.

The final objective for our model is a linear combination
of the maximum likelihood loss in Eq. 8 and Eq. 10, i.e.,

L = LMLE + λLAP (11)

Supervised Training with Golden Answers
The proposed methods only requires the paragraph-question
pairs, and the pivot answers are inferred by the model itself.
In some NQG applications we also had the ground truth an-
swers. Inspired by the supervised attention (Liu et al. 2016),
we can improve the pivot answer predictor with the addi-
tional supervision. Concretely, given the ground truth an-
swers labels ai ∈ {0, 1}, which denote whether the ith to-
kens is in the answers, after the pivot answer prediction layer
in Eq. 3, we add the additional supervised objective:

LS = −
∑
i

ai log gi + (1− ai) log(1− gi) (12)

which would motivate the predicted pivot answers towards
the ground truth answers. Adding this objective we get the
supervised loss function to optimize:

L = LMLE + λ1LAP + λ2LS (13)

Experiment
Dataset
In this paper, we conduct the experiments on the SQuAD
dataset that has been widely used for NQG evaluation. The

SQuAD dataset consists of 23,215 paragraphs from 536
articles in Wikipedia, with nearly 100,000 crowd-sourced
question-answer pairs. 87,600 questions are used for train-
ing, 10,570 for development, and an unknown number in a
hidden test set. Since the test sets are not publicly available,
we follow Zhou et al. (2017) to randomly split the dev set
into two parts and use them as the development set and test
set for NQG. Thus, the total number of training, developing
and testing set is 86,635, 8,965 and 8,964 respectively.

Implementation Details
In this paper, we preprocess the text with the sentence-
piece (Kudo and Richardson 2018) tokenizer with vocabu-
lary size 30,000. We initialize the word embedding with the
skip-gram algorithm1. We truncate the paragraph to max se-
quence size of 256, and question to max sequence length of
30. For the encoder and decoder, we set the number of lay-
ers to 4, and the number of head to 6, hidden size is set to
384. Dropout is applied to the output of word embedding
layer and the multi-head attention layer with rate 0.2. We
use the Adam (Kingma and Ba 2014) optimizer with default
hyperparameters to optimize the models. During inference,
we adopt a top-5 beam search with length penalty of 0.9.

For the answer pivot weight λ in Eq. 11, we first optimize
the MLE loss and then gradually increasing it from 0 to 0.5,
which is tuned in the development set. We found this train-
ing strategy would reduce the loss variance, therefore, the
updates of the parameters are smooth.

Following previous works of NQG (Song, Wang, and
Hamza 2017; Zhou et al. 2017; Chen, Wu, and Zaki 2019),
we adopt 3 automatic evaluation metrics: BLEU, Meteor
and Rouge-L, which measure the n-gram similarities be-
tween the generated questions and real questions.

answer-agnostic NQG Result
We first evaluate our model on the pure answer-agnostic set-
ting, where we have no ground truth answers during training
and inference period. We adopt two answer-agnostic NQG
models for comparison:

• L2A (Du, Shao, and Cardie 2017) is the very first NQG
models which is a standard standard seq2seq model with
attention mechanism.

• SAQG (Scialom, Piwowarski, and Staiano 2019) is a self-
attention based answer-agnostic models enhanced with
copy mechanism. SAQG also replace the named entity
with a placeholding tokens.

The result is shown in Table 1. Although our model is
not equipped with the sophisticated mechanism such as copy
or placeholding, but our vanilla model is comparative with
the previous state of the art answer-agnostic models. When
incorporating the answer pivot prediction layer, the perfor-
mance of our model boost a lot and achieves a new state of
the art result on the answer-agnostic NQG. It demonstrates
the advantage and effectiveness of explicitly incorporating
answer information when generating the questions.

1https://code.google.com/archive/p/word2vec/



BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor Rouge-L

answer-agnostic

L2A 43.09 25.96 17.50 12.28 16.62 39.75
SAQG 43.33 26.27 18.32 13.23 - 40.22

Our model w/o AP 43.18± 0.57 25.99 ± 0.36 18.67 ± 0.25 13.09± 0.18 17.24± 0.24 40.98 ± 0.37
Our model 47.24 ± 0.67 28.03± 0.42 20.96± 0.29 14.78 ± 0.17 18.61± 0.28 41.87± 0.27

answer-aware

NQG++ 44.82 26.06 18.28 13.02 16.68 41.22
SynNet 47.98 28.08 20.45 15.27 17.53 41.91

KPG 46.23 27.78 20.95 14.93 17.24 40.48
ASs2s 47.09 28.62 19.04 15.02 17.02 41.89

Our model 48.26 ± 0.51 29.23± 0.30 22.37± 0.19 16.42 ± 0.13 18.95 ± 0.21 43.07± 0.19

Table 1: Experimental results on answer-agnostic answer-aware setting. Our model w/o AP refers to our model without the
answer pivot layer. In answer-aware setting the ground truth answers are only provided during training. The performances of
our models are reported as the mean and standard derivation values run on five different initiation.

answer-aware NQG Results
We also compare our model with the answer-aware NQG
models where the ground truth answers are provided. Before
reporting the results, we note that the previous NQG mod-
els sometimes assume the answers are given in both train-
ing and inference period. However, in real inference appli-
cations, the ground-truth answers are not provided, so we
should generate the answer in advance. This step is also
called answer selection in previous NQG (Xiao et al. 2018;
Subramanian et al. 2018). For fairly comparison, we adopt 4
NQG baselines that have public implementations:

• NQG++2 (Zhou et al. 2017) is a GRU based seq2seq
model with copy and attention mechanism, enhanced with
answer position features and lexical features. We adopt
the same answer selection model with (Xiao et al. 2018).

• SynNet3 (Golub et al. 2017) is an LSTM based seq2seq
model. In addition to the question generation, they also
adopt an IOB tagging model to predict the answer.

• KPG4 (Subramanian et al. 2018) also takes the answer
prediction into account. Before generating the question
they first extract the key phrase in the document.

• ASs2s5 (Kim et al. 2019) is also based on LSTM. They
mask the answers with a special token to reduce the an-
swer’s appearance in the target question. We predict the
special mask tokens during inference.

The result is shown in Table 1. Our model also excels at
the answer-aware setting. In the previous models they are
always fed with the ground-truth answers during training,
however, during inference the answers are predicted, the
training and inference discrepancy is also referred as expo-
sure bias in machine translation (Ranzato et al. 2015), and

2https://github.com/magic282/NQG
3https://github.com/davidgolub/QuestionGeneration
4https://github.com/ujjax/question-generation
5https://github.com/yanghoonkim/NQG ASs2s

the predicted answers are sometimes poor that hurt quality
of the question generated on it. On the contrary, in our pro-
posed answer pivot models, the questions are always gener-
ated based on the induced answers that bypass the exposure
bias problem, and the supervised signal further improves the
answer generation quality.

Human Evaluation
Although the automatic evaluation is an efficient criterion to
evaluate the quality of the NQG systems, sometimes they are
biased toward a specific attribute of the generated question
(Hosking and Riedel 2019). So we conduct human qualita-
tive evaluation of the generated outputs. We randomly sam-
ple 100 context-question pairs from the test set and ask three
volunteers to evaluate the sample quality. We consider three
aspects of the generated questions:

� Fluency: Whether the generated questions are well-posed
and natural in terms of grammar and semantic.

� Answerable: Whether the generated questions could be
answered by the context paragraph.

� Significance: Whether the questions are focusing on the
significant aspect of the paragraph or the trivial one. This
criterion could be evaluate based on two standards: (1),
whether the generated question is just a simple syntactical
transformation of the paragraph sentence (2), whether the
corresponding answers are trivial.

We adopt five models for comparison: (a): NQG++ (b):
SAQG (c): our model without answer pivot (d) our model.
(e) our model with supervised answer pivot training (LS in
Eq. 12). We shuffle the questions generated by the different
models before the assessment. Ratings were collected on a
1-to-5 scale. The result is shown in Table 2.

We can see from the table that the fluency of our model
and SAQG are superior to NQG++. As the building block
of our model and SAQG are both based on Transformer
(Vaswani et al. 2017), which has already shown advantage in



Fluency Answerable Significance Ave.

NQG++ 4.02 4.64 2.28 3.65

SAQG 4.22 3.26 3.68∗ 3.72

- answer pivot 4.18 3.20 3.52 3.63

our model 4.26 3.98 3.68∗ 3.97

+ LS 4.22 4.58 3.62 4.14

Table 2: Human assessment of the generated questions.

natural text generation (Radford et al. ; 2019). The NQG++
is an answer-aware model that most of the generated ques-
tions are answerable. But the model relies too heavily on
the golden answers so the significance score is poor. On the
other hand, the answer-agnostic model could generate more
significant questions. However, as the answers are not taken
into account, some questions are invalid based on the cur-
rent paragraph, which result in a poor answerable score. Our
proposed model takes advantage of both answer-aware and
answer-agnostic NQG and achieves a better average score.
Besides, the model behaves even better when we incorpo-
rate the supervised answer pivot training signal, as it pro-
vides more accurate answer position.

In Table 3, we report a few sample outputs of the different
models. We found that the LSTM based models sometimes
suffer from the over-generation problem (Tu et al. 2016). In
addition, we found that adding answer information making
the question more specific, and the model without answer
information is more general, this may explain the fact that
the output of the SAQG and the model without answer pivot
is relatively short.

Induced Answer Pivot Analysis
The core of the proposed model is the hidden answer pivot,
which would guide the questions to focus on specific an-
swers. In this section, we evaluate the quality of the induced
answer pivot. Concretely, after answer pivot prediction in
Eq. 3, for each sample paragraph with length n, we have n
binary predictions Z ∈ {0, 1}n, each item denotes whether
the current word is in the answers. And the ground truth bi-
nary labels A ∈ {0, 1}n. Then for each samples, we can
define the precision, recall and F1 score:

Precision =
|A ∩ Z ∈ 1|
|Z ∈ 1|

Recall =
|A ∩ Z ∈ 1|
|A ∈ 1|

F1 =
2× Precision×Recall
Precision+Recall

(14)

where |A ∩ Z ∈ 1| denotes the number of 1s occur in
both A and Z. These metrics are widely used in informa-
tion retrieval (Manning, Raghavan, and Schütze 2010) and a
higher score indicating higher answer accuracy. We compare
our model with two baselines.

• Random: We randomly predict the binary label for each
token with Bernoulli distribution probability 0.5.

Context: In 1648 before the term genocide had been coined,
the Peace of Westphalia was established to protect ethnic,
national, racial and in some instances religious groups.

Human: What year was the Peace of Westphalia signed?

NQG++: what did the peace of westphalia established es-
tablished established ...

SAQG: when did the peace of westphalia established ?

-AP: when did the term been coined ?

Our model: why does the peace of westphalia established ?

+LS: what does the peace of westphalia protect ?

Context: In 1507, he was ordained to the priesthood, and
in 1508, von Staupitz, first dean of the newly founded Uni-
versity of Wittenberg, sent for Luther, to teach theology. He
received a bachelor’s degree in Biblical studies on 9 March
1508, and another bachelor’s degree in the Sentences by Pe-
ter Lombard in 1509.

Human: When was Martin Luther ordained as a priest?

NQG++: when did he received a bachelor’s degree in bibli-
cal studies ?

SAQG: who is von staupitz ?

-AP: what did he teach ?

Our model: who sent luther to teach theology ?

+LS: who is the first dean of the newly founded university
of wittenberg ?

Context: For exercise, Tesla walked between 8 to 10 miles
per day. He squished his toes one hundred times for each
foot every night, saying that it stimulated his brain cells.

Human: What was the daily distance walked by Tesla?

NQG++: who walked between 8 to 10 miles a day ?

SAQG: why did he walk every night ?

-AP: how much miles did tesla walked ?

Our model: why did he walked every night ?

+LS: why did tesla walked every night ?

Table 3: Some generated questions on SQuAD dev set.

• SynNet: It contains an LSTM based IOB tagging model.
We process the label with B and I to 1 and O to zero.

• SeqLabel: We remove the question generation of our
model and only optimize Eq. 12. Thus, our model is re-
duced to a pure sequence labeling model with only answer
position supervision.

The result is shown in Table 4. It is clear if the models are
supervised by the ground truth labels, the answer prediction
accuracy would be improved a lot. However, our model has
a promising result even if it was trained without explicit an-
swer supervision, which demonstrates that modeling the an-
swer information during question generation is useful. Just
like the attention (Bahdanau, Cho, and Bengio 2014) mech-



Many locals and tourists frequent the southern California coast for its popular beaches, and the

desert city of Palm Springs is popular for its resort feel and nearby open spaces.

Throughout the history of education the most common form of school discipline was corporal

punishment. While a child was in school, a teacher was expected to act as

a substitute parent, with all the normal forms of parental discipline.

The 8- and 10-county definitions are not used for the greater Southern California Megaregion, one

of the 11 megaregions of the United States. The megaregion's area is more expansive, extending

east into Las Vegas, Nevada, and south across the Mexican border into Tijuana.

Figure 3: The generated answer pivot of our model. Darker cells means the higher probability of the word to be the answer. We
use the bold words to denote the ground truth answers.

Precision Recall F1
Random 6.4 51.3 21.9
SynNet 76.4 84.3 81.9

SeqLabel 72.9 88.6 80.5
- answer pivot 19.3 59.6 39.4

our model 58.6 73.4 66.2
+LS 77.4 89.6 83.9

Table 4: The precision, recall, F1 of the generated answers.

anism, this hidden pivot is learned from data and act as a
pivot to guide the subsequence generation.

In Figure 3, we plot some sampled answer pivot based on
g in Eq. 3. We can see that our model is generally focusing
on the significant part of the paragraph and pay less attention
to the stop words that are unlikely to be the answers. This in-
teresting result also sheds light on a promising unsupervised
machine comprehension task, where we could obtain the an-
swers based on the abundant paragraph-question pairs. We
leave this for future study.

Transfer Learning on Machine Comprehension
Since one of the most important applications of NQG is
generating more training data for MRC. In this section,
we use the proposed models to generate more data for
SQuAD. Concretely, we use the 2019-01-01 wikidumps6

with WikiExtractor7 tools. We extract only the text passages
and ignore lists, tables, and headers, then we randomly sam-
pled several paragraphs from the dumps that do not appear
in the SQuAD datasets.

We compare our model with two baselines. (a): NQG++:
we use a simple sequence tagging model to generate the can-
didate answers and then use NQG++ to generate the ques-
tions. (b): SynNet: it is a joint model that the answers and
questions are generated simultaneously. We use Bert (Devlin
et al. 2018) base model as the MRC model. We gradually in-
crease the number of training data from different NQG and
train Bert with these additional data.

6https://dumps.wikimedia.org/enwiki/
7https://github.com/attardi/wikiextractor

EM

80

80.75

81.5

82.25

83

0 20k 40k 60k 80k

Our Model NQG++ SynNet

F1

88.4

88.65

88.9

89.15

89.4

0 20k 40k 60k 80k

Figure 4: The SQuAD result of Bert base model. The x-axis
is the number of additional data we fed to the model.

We evaluate the MRC result in terms of exact match (EM)
and F1. The results are shown in Figure 4. We can see that
the data generated by our model are more beneficial to the
MRC. We found that the answers generated by SynNet and
the sequence tagging model are most named entities, and
sometimes the questions generated on them are very simple,
usually a transformation of the paragraph text, which has
less contribution to improve the MRC quality. The results of
MRC further affirm that taking question information to infer
the candidate answer, which is model by the answer pivot in
this work, is important for NQG.

Conclusion
We introduce a novel hidden answer pivot module to the
neural question generation which explicitly modeling the
hidden answer information. It takes advantage of the pre-
vious answer-aware and answers agnostic NQG to gener-
ate non-trivial and answerable questions. We introduce the
straight through estimator to optimize the model. Experi-
mental results demonstrate the advantage of the proposed
model in terms of the quality of the generated questions and
the induced answers. Furthermore, the generated QA pairs
also improve the downstream MRC task.
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